Predicting Protein Aggregation during Storage in Lyophilized Solids Using Solid State Amide Hydrogen/Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS)
نویسندگان
چکیده
Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products.
منابع مشابه
Mass Spectrometric Approaches to Study Protein Structure and Interactions in Lyophilized Powders
Amide hydrogen/deuterium exchange (ssHDX-MS) and side-chain photolytic labeling (ssPL-MS) followed by mass spectrometric analysis can be valuable for characterizing lyophilized formulations of protein therapeutics. Labeling followed by suitable proteolytic digestion allows the protein structure and interactions to be mapped with peptide-level resolution. Since the protein structural elements ar...
متن کاملMass spectrometric approaches using electrospray ionization charge states and hydrogen-deuterium exchange for determining protein structures and their conformational changes.
Electrospray ionization (ESI) mass spectrometry (MS) is a powerful analytical tool for elucidating structural details of proteins in solution especially when coupled with amide hydrogen/deuterium (H/D) exchange analysis. ESI charge-state distributions and the envelopes of charges they form from proteins can provide an abundance of information on solution conformations that is not readily availa...
متن کاملMapping Protein-Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry.
Biological processes are the result of noncovalent, protein-ligand interactions, where the ligands range from small organic and inorganic molecules to lipids, nucleic acids, peptides, and proteins. Amide groups within proteins constantly exchange protons with water. When immersed in heavy water (D2O), mass spectrometry (MS) can measure the change of mass associated with the hydrogen to deuteriu...
متن کاملConformer-specific characterization of nonnative protein states using hydrogen exchange and top-down mass spectrometry.
Characterization of structure and dynamics of nonnative protein states is important for understanding molecular mechanisms of processes as diverse as folding, binding, aggregation, and enzyme catalysis to name just a few; however, selectively probing local minima within rugged energy landscapes remains a problem. Mass spectrometry (MS) coupled with hydrogen/deuterium exchange (HDX) offers a uni...
متن کاملAmide Hydrogen–Deuterium Exchange: A Fast Tool for Screening Protein Stabilities in Chromatography
Please direct correspondence to Erik Fernandez at [email protected]. Protein unfolding and aggregation can be serious considerations when designing laboratory and preparative chromatographic purification steps. This problem has been studied most thoroughly within the contexts of reversed-phase chromatography and hydrophobic interaction chromatography. However, there are currently no robust meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2014